3py::module
phys_m = m.def_submodule(
"phys");
20py::class_<phys::dimension7>(
phys_m,
"dim")
21 .def(py::init<
const std::array<double, 7>&>())
136py::class_<phys::uval>(
phys_m,
"uval")
139 .def(py::init<const double&>())
140 .def(py::init<const phys::dimension7&, const double&>())
142 "__add__", [](
const phys::uval& lhs,
const phys::uval& rhs) {
return lhs + rhs; }, py::is_operator())
144 "__sub__", [](
const phys::uval& lhs,
const phys::uval& rhs) {
return lhs - rhs; }, py::is_operator())
146 "__mul__", [](
const phys::uval& lhs,
const phys::uval& rhs) {
return lhs * rhs; }, py::is_operator())
148 "__mul__", [](
const phys::uval& lhs,
const double& rhs) {
return lhs * rhs; }, py::is_operator())
150 "__rmul__", [](
const phys::uval& from_rhs,
const double& from_lhs) {
return from_lhs * from_rhs; },
153 "__truediv__", [](
const phys::uval& lhs,
const phys::uval& rhs) {
return lhs / rhs; }, py::is_operator())
155 "__truediv__", [](
const phys::uval& lhs,
const double& rhs) {
return lhs / rhs; }, py::is_operator())
157 "__truediv__", [](
const double& lhs,
const phys::uval& rhs) {
return lhs / rhs; }, py::is_operator())
constexpr dimensions power(const T index) const
std::string to_string() const
value_type value
magnitude
phys_si_m def("_as", static_cast< double(*)(const phys::dimension7, const std::string &)>(&phys::si::as))
constexpr real_precision halfpi
constexpr real_precision eps32
constexpr std::complex< real_precision > iu(1.0L, 0.0L)
constexpr real_precision sqrttwo
constexpr real_precision eps8
constexpr real_precision eu
Euler'Constant.
constexpr real_precision pi
pi
constexpr real_precision sqrthalf
constexpr real_precision eps16
constexpr std::complex< real_precision > im(0.0L, 1.0L)
Imaginary Unit.
constexpr real_precision twopi
constexpr std::complex< real_precision > iz(0.0L, 0.0L)
constexpr dimension7 electric_flux_density_d
[I/L^2*T]
constexpr dimension7 molar_energy_d
[M*L^2/T^2/N] energy per amount
constexpr uval Bohr_length(length_d, 5.291772106712E-11L)
hb^2/(ke*me*e^2)
constexpr uval _base_1F(electric_capacitance_d)
1 faraday
constexpr dimension7 temperature_d
constexpr dimension7 energy_density_d
[M/L/T^2] energy per volume
constexpr uval _base_1Om(electric_resistance_d)
1 ohm
constexpr uval ep0_permittivity(permittivity_d, 8.854187817E-12L)
1/(4*pi*ke)
constexpr dimension7 electric_resistance_d
[M*L^2/T^3/I^2] electric potential versus current
constexpr dimension7 electric_resistivity_d
[M*L^3/T^3/I^2] electric_resistance time length
constexpr uval _base_1Wb(magnetic_flux_d)
1 weber
constexpr uval e_charge(electric_charge_d, 1.602176620898E-19L)
constexpr dimension7 wave_number_d
[L^-1]
constexpr uval _base_1Pa(pressure_d)
1 pascal
constexpr dimension7 acceleration_d
[L*T^-2]
constexpr dimension7 length_d
[L]
constexpr uval N_Avagadro(dimensionless_d/amount_of_substance_d, 6.02214085774E+23L)
constexpr dimension7 inertia_d
[M*L^2]
constexpr dimension7 mass_d
[M]
constexpr dimension7 magnetization_d
[I/L] magnetic moment per volume
constexpr dimension7 specific_heat_capacity_d
[L^2/T^2/Q] capacity per mass
constexpr dimension7 current_density_d
[I/L^2] current per area
constexpr uval _base_1A(electric_current_d)
1 ampere
constexpr dimension7 absorbed_dose_rate_d
[L^2/T^3] (radiation) power per mass
constexpr dimension7 activity_of_a_nuclide_d
constexpr dimension7 mass_line_density_d
[M/L] mass per line
constexpr dimension7 luminous_flux_d
[J]
constexpr dimension7 current_d
constexpr dimension7 area_flow_rate_d
[L^2*T^-1]
constexpr dimension7 dimensionless_d
[1]
constexpr dimension7 force_d
[M*L/T^2] mass times acceleration
constexpr uval Faraday_constant(electric_charge_d/amount_of_substance_d, 96485.3328959L)
e*N
std::string to_string(const uval &u)
constexpr dimension7 action_d
[M*L^2/T] energy integrate time
constexpr dimension7 amount_of_substance_d
[N]
constexpr dimension7 energy_d
[M*L^2/T^2] force integrate length
constexpr uval amu_mass(mass_d, 1.66053886E-27L)
static CONSTTYPE real_precision au_2_angoverps
constexpr dimension7 radiance_d
[M/T^3] (radiation) power per area
constexpr dimension7 electric_charge_density_d
[I/L^3*T] charge per volume
constexpr dimension7 heat_density_flow_rate_d
[M/T^3] (heat flow) energy per area per time
constexpr uval _base_1Hz(frequency_d)
1 hertz
static CONSTTYPE real_precision au_2_amu
1mea means we measure a quantity at 1*N level.
constexpr dimension7 luminance_d
[J/L^2] luminous_intensity per area
static CONSTTYPE real_precision au_2_J_1mea
constexpr dimension7 thermal_insulance_d
[M^-1*T^3*Q] = 1 / heat_transfer_coefficient
constexpr dimension7 energy_line_density_d
[M/L/T^2] energy per line
constexpr dimension7 magnetic_permeability_d
[M*L/T^2/I^2], mu
constexpr dimension7 thermal_conductivity_d
[M*L/T^3/Q]
constexpr dimension7 power_area_density_d
[M/T^3] power per area
constexpr dimension7 absorbed_dose_d
[L^2/T^2] (radiation) energy per mass
constexpr uval _base_1V(electric_potential_d)
1 volt
constexpr dimension7 magnetic_moment_d
[I*L^2] current integrate area
constexpr dimension7 electric_field_strenth_d
[M*L/T^3/I] electric potential per length
constexpr dimension7 pop_d
[L*T^-6]
constexpr dimension7 mass_flow_rate_d
[M/T] mass per time
constexpr uval _base_1s(time_d)
1 second
constexpr dimension7 permittivity_d
[M^-1*L^-2*T^4*I^2], epsilon
constexpr dimension7 mass_density_d
[M/L^3] mass per volume
static CONSTTYPE real_precision au_2_wn
constexpr uval _base_1m(length_d)
1 meter
constexpr dimension7 wavelength_d
constexpr dimension7 mass_flow_acceleration_d
[M/T^2] mass per per time
constexpr uval _base_1S(electric_conductance_d)
1 siemens
constexpr dimension7 electric_polarization_field_d
[I/L^2*T], P = dipole moment pe volume
constexpr uval mn_mass(mass_d, 1.67492749804e-27L)
constexpr dimension7 torque_d
constexpr uval muB_magnetic_moment(magnetic_moment_d, 9.27400999457E-24L)
e*hb / (2*me)
constexpr dimension7 electric_potential_d
[M*L^2/T^3/I] energy per charge
constexpr dimension7 irradiance_d
[M/T^3] (radiation) power per area
constexpr dimension7 concentration_d
[N/L^3] amount per volume
constexpr uval _base_1(dimensionless_d)
1
constexpr dimension7 substance_permeability_d
[L^-1*T]
constexpr dimension7 electric_capacitance_d
[M^-1*L^-2*T^4*I^2] charge versus electric potential
constexpr uval Rydberg_constant(wave_number_d, 10973731.56850865L)
me* e ^ 4 / (8 * ep0 ^ 2 * h ^ 3 * c)
constexpr dimension7 electric_line_charge_density_d
[I/L*T] charge per line
constexpr dimension7 jerk_d
[L*T^-3]
constexpr dimension7 thermal_resistance_d
[M^-1*L^-2*T^3*Q]
constexpr dimension7 inductance_d
[M*L^2/T^2/I^2] magnetic flux versus current, L
constexpr dimension7 electric_dipole_moment_d
[I*L*T] charge times length
constexpr dimension7 crackle_d
[L*T^-5]
constexpr dimension7 power_d
[M*L^2/T^3] energy per time
constexpr dimension7 specific_volume_d
[L^3/M] volume per mass
constexpr uval _base_1kg(mass_d)
1 kilogram
constexpr dimension7 electric_chargme_mass_ratio_d
[M^-1*T*I]
constexpr dimension7 heat_capacity_d
[M*L^2/T^2/Q] energy per temperature
constexpr dimension7 thermal_resistivity_d
[M^-1*L^-1*T^3*Q]
constexpr uval muN_magnetic_moment(magnetic_moment_d, 5.05078369931E-27L)
e*hb / (2*mn)
constexpr dimension7 heat_transfer_coefficient_d
[M/T^3/Q] heat_flux_density versus temperature
constexpr dimension7 electric_displacement_field_d
[I/L^2*T], D
static CONSTTYPE real_precision au_2_ang
constexpr dimension7 heat_flow_rate_d
[M/L/T^3] (heat) energy per time
constexpr uval mp_mass(mass_d, 1.67262189821E-27L)
constexpr dimension7 electric_current_d
[I]
constexpr dimension7 angular_momentum_d
[M*L^2/T] torque integrate time
constexpr uval R_gas_constant(molar_entropy_d, 8.314459848L)
k * N
constexpr dimension7 volume_flow_rate_d
[L^3*T^-1]
constexpr dimension7 radiant_intensity_d
[M/L/T^3] (radiation) energy per time
constexpr dimension7 electric_area_charge_density_d
[I/L^2*T] charge per area
constexpr dimension7 luminous_intensity_d
[J]
constexpr dimension7 mass_area_density_d
[M/L^2] mass per area
constexpr dimension7 mass_flow_jerk_d
[M/T^3] mass per per per time
static CONSTTYPE real_precision au_2_fs
constexpr dimension7 illuminance_d
[J/L^2] luminous_intensity per area
static CONSTTYPE real_precision au_2_ps
constexpr dimension7 angular_acceleration_d
[T^-2]
constexpr dimension7 electric_charge_d
[I*T] current integrate time
constexpr uval _base_1W(power_d)
1 watt
constexpr dimension7 speed_d
[L*T^-1]
constexpr uval _base_1H(inductance_d)
1 henry
static CONSTTYPE real_precision au_2_kcal_1mea
constexpr dimension7 dose_equivalent_d
[L^2/T^2] (radiation) energy per mass
constexpr uval k_Boltzman(entropy_d, 1.3806490351E-23L)
constexpr uval G_gravitional_constant(dimension7{{3, -2, -1}}, 6.6740831E-11L)
constexpr uval _base_1C(electric_charge_d)
1 comloub
constexpr uval hb_Planck(action_d, 1.05457180013E-34L)
h/(2*pi)
constexpr dimension7 volume_d
[L^3]
constexpr dimension7 thermal_diffusivity_d
[L^2*T^-1] = thermal_conductivity / (specific_heat_capacity * density)
constexpr dimension7 absement_d
[L*T]
constexpr uval h_Planck(action_d, 6.62607004081E-34L)
constexpr dimension7 time_d
[T]
constexpr uval me_mass(mass_d, 9.1093835611E-31L)
constexpr dimension7 magnetic_field_strength_d
[I/L] magnetic moment per volume
constexpr dimension7 electric_conductivity_d
[M^-1*L^-3*T^3*I^2] 1 / electric_resistivity
constexpr dimension7 surface_tension_d
[M/T^2] energy per area
constexpr dimension7 electric_conductance_d
[M^-1*L^-2*T^3*I^2] = 1 / electric_resistance
constexpr dimension7 entropy_d
[M*L^2/T^2/Q] energy per temperature
constexpr uval _base_1T(magnetic_flux_density_d)
1 tesla
constexpr dimension7 none_d
constexpr dimension7 kinematic_viscosity_d
[L^2*T^-1] = viscosity / density
constexpr uval ke_Comloub(dimensionless_d/permittivity_d, 8.9875517873681764E+9L)
constexpr uval _base_1N(force_d)
1 newton
constexpr dimension7 jounce_d
[L*T^-4]
constexpr dimension7 magnetic_flux_d
[M*L^2/T^2/I] energy per current = E/I = B*S
constexpr dimension7 molar_entropy_d
[M*L^2/T^2/Q/N] entropy per amount
constexpr dimension7 dynamic_viscosity_d
[M/L/T] force / (area * gradient(velocity))
constexpr uval Stefan_constant(dimension7{{0, -3, 1, -4}}, 5.67036713E-8L)
pi^2 kB^4/(60*hb^3*c^2)
constexpr dimension7 frequency_d
[T^-1]
constexpr dimension7 angular_velocity_d
[T^-1]
constexpr uval mu0_permeability(magnetic_permeability_d, 1.256637061E-6L)
4*pi*ke/c^2
static CONSTTYPE real_precision au_2_ev
constexpr dimension7 heat_density_d
[M/T^2] (heat flow) energy per area
static CONSTTYPE real_precision au_2_K
constexpr dimension7 amount_d
constexpr dimension7 magnetic_flux_density_d
[M*T^-2/I] B = electric_field_strenth_d versus velocity
constexpr uval c_lightspeed(speed_d, 2.997924580E+8L)
constexpr dimension7 distance_d
constexpr dimension7 thermodynamic_temperature_d
[Q]
constexpr uval _base_1J(energy_d)
1 joule
constexpr dimension7 inv_temp_d
constexpr dimension7 heat_flux_density_d
[M/T^3] (heat) energy per time per area
constexpr dimension7 momentum_d
[M*L/T] force integrate time
constexpr dimension7 area_d
[L^2]
constexpr dimension7 specific_energy_d
[L^2/T^2] (count) energy per mass
constexpr uval _base_1cd(luminous_intensity_d)
1 candela
constexpr dimension7 pressure_d
[M/L/T^2] energy per volume = force per area
constexpr uval _base_1K(thermodynamic_temperature_d)
1 kelvins
constexpr uval _base_1mol(amount_of_substance_d)
1 mole
constexpr dimension7 inv_ener_d
[M^-1*L^-2*T^2], inversed energy, such as 1/(kB * T)
constexpr dimension7 moment_of_force_d
[M*L^2/T^2] force cross length
constexpr dimension7 power_density_d
[M/L/T^3] power per volume
uval power(const uval &lhs, const real_precision &index)