8 f_list_raw = os.listdir(path)
11 if os.path.splitext(i)[1] ==
'.ds':
15if __name__ ==
'__main__':
17 out_path = sys.argv[2]
18 from_size = int(sys.argv[3])
19 samp_size = int(sys.argv[4])
24 file_id = np.arange(Nf)
25 np.random.shuffle(file_id)
36 frps = re.split(
"[ |\n]+", os.popen(
37 "cat %s | grep -A2 f_rp | tail -n 1"%(path +
'/samp%d.ds'%i)
39 frp += [float(frps[1])]
41 Es = re.split(
"[ |\n]+", os.popen(
42 "cat %s | grep -A2 model.rep.E | tail -n 1"%(path +
'/samp%d.ds'%i)
52 pd.DataFrame(np.vstack([file_id, frp, E1, E2, v]).T).to_csv(
53 out_path +
'_dat.csv',
54 header=[
'id',
'frp',
'E1',
'E2',
'v'],
61 while len(samp_files) < samp_size:
64 r = np.random.random(size=(Nf))
65 idx = np.where(v > r*maxv)[0]
66 samp_files += list(file_id[idx])
68 samp_files = samp_files[:samp_size]
71 os.popen(
'mkdir %s'%out_path)
74 os.popen(
'cp %s %s'%(path +
'/samp%d.ds'%i, out_path +
'/init%d.ds'%cnt))