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 We have developed the phase space formulation of quantum dynamics for 
nonadiabatic systems where both discrete and continuous degrees of freedom are 
involved. The most essential element is the one-to-one correspondence mapping 
between quantum operators and classical functions often defined on a smooth manifold, 
namely, phase space[6]. 

Our work first revealed the normalized constraint[2] for the discrete phase space (for 
electronic DOFs) and developed classical mapping models (CMM)[1-5], lying on the 
U(F)/U(F-1) manifold with Meyer-Miller variables, i.e., the constraint coordinated-
momentum phase space (CPS). Combined with the continuous Wigner phase space for 
nuclear DOFs, the phase space formulation can be applied to nonadiabatic systems, as 
well as other composite systems. In addition, by employing characteristic function to 
depict a manifold and ensure the exact correspondence, we also develop weighted 
mapping model (wMM) based on weighted phase space (WPS). 

Three key elements in the phase space framework: 

1. the initial condition of the trajectory (i.e., manifold), 
2. the EOMs of the trajectory, and 
3. the integral expression for the expectation/ensemble. 
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It is suggested a phase space family with a constraint parameter that can be negative and 
continuous, interpreted as a manifold shape parameter other than the so-called “ZPE” 
factor[3]. We also develop generalization of single manifold and extend the mapping to 
weighted manifolds[6]. We have realized different kinds of efficient mapping manifolds 
and mapping kernels for better description of electronic coherence and decoherence, as 
well as of nuclear dynamics for nonadiabatic systems. Among trajectory-based methods, 
phase space mapping approach exhibits advantages for composite systems.
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Figure 1.  Quantum dissipation dynamics at low 
temperature with comparisons of three trajectory-based 
methods, including Ehrenfest dynamics, Surface 
Hopping and phase space mapping (CMM) approach 
for (left) spin-boson model and (right) FMO complex.
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Figure 2. (upper-left) Cavity QED dynamics of trajectory 
dynamics, where CMM/wMM outperforms Ehrenfest/SH 
dynamics. (lower-left) Plateau of scattering probability of 
ECR model. (upper-right) Spin dynamics for Ising model 
with short range interaction. 
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Figure 3. (left) Weighted scheme 
surrounding Ehrenfest trajectory 
g i v e n  i n  w M M - B O .  ( r i g h t )  A 
perturbative approach to include 
corrections for Ehrenfest dynamics. 
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