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Introduction

namely, phase space[6].
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Three key elements in the phase space framework:

1.t
2. the EOMs of the trajectory, and
3.t

1= [ du(X) 4, (XK (X)

. the 1nitial condition of the trajectory (1.e., manifold),

. the integral expression for the expectation/ensemble.

We have developed the phase space formulation of quantum dynamics for
nonadiabatic systems where both discrete and continuous degrees of freedom are
involved. The most essential element 1s the one-to-one correspondence mapping
between quantum operators and classical functions often defined on a smooth manifold,
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Our work first revealed the normalized constraint[2] for the discrete phase space (for
| electronic DOFs) and developed classical mapping models (CMM)[1-5], lying on the
- | U(F)/U(F-1) manifold with Meyer-Miller variables,
momentum phase space (CPS). Combined with the continuous Wigner phase space for
nuclear DOFs, the phase space formulation can be applied to nonadiabatic systems, as
well as other composite systems. In addition, by employing characteristic function to
depiet a manifold and ensure the exact correspondence, we also develop weighted
mappmg model (WMM) based on welghted phase space (WPS).
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Numerical Results

1. Constraint Coordinate-Momentum Phase Space (CMM)
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Figure 2. (upper-left) Cavity QED dynamics of trajectory
dynamics, where CMM/wMM outperforms Ehrenfest/SH
dynamics. (lower-left) Plateau of scattering probability of
ECR model. (upper-right) Spin dynamics for Ising model
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3. Weighted U(F)/U(F-2) Rank=2 Manifold Scheme: wMM-BO
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Conclusions

It 1s suggested a phase space family with a constraint parameter that can be negative and
continuous, iterpreted as a manifold shape parameter other than the so-called “ZPE”
factor[3]. We also develop generalization of single manifold and extend the mapping to
weighted manifolds[6]. We have realized different kinds of efficient mapping manifolds
and mapping kernels for better description of electronic coherence and decoherence, as
well as of nuclear dynamics for nonadiabatic systems. Among trajectory-based methods,
phase space mapping approach exhibits advantages for composite systems.
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