
We have developed a new phase space formulation and a corresponding trajectory-based

quantum dynamics method for composite systems, where either discrete or continuous degrees of

freedom could be involved. The most essential element of the one-to-one correspondence between

quantum operators and classical functions is a smooth manifold, namely, the phase space.

Our work first revealed the normalized constraint[1] for the discrete phase space (for electronic

DOFs) and developed classical mapping models (CMM)[1-4], lying on the U(F)/U(F-1) manifold

with Meyer-Miller variables, i.e., the constraint coordinated-momentum phase space (CPS).

Combined with the continuous Wigner phase space for nuclear DOFs, the phase space formulation

can be applied to nonadiabatic systems, as well as other composite systems. In addition, by

employing characteristic function to depict a manifold and ensure the exact correspondence, we also

develop weighted mapping model (wMM) based on weighted phase space (WPS).
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Three key elements in the phase space framework:

1. the initial condition of the trajectory (i.e., manifold),

2. the EOMs of the trajectory, and

3. the integral expression for the expectation/ensemble.
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It points out a phase space family with a constraint parameter that can be negative and

continuous, interpreted as a manifold shape parameter other than the so-called “ZPE” factor. We also

develop generalization of single manifold and extend the mapping to weighted manifolds. We have

realized different kinds of efficient mapping manifolds and mapping kernels for better description of

electronic coherence and decoherence, as well as of nuclear dynamics for nonadiabatic systems.

Among trajectory-based methods, phase space mapping approach exhibits advantages for composite

systems.
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Figure 1. Quantum dissipation dynamics at low temperature
with comparisons of three trajectory-based methods,
including Ehrenfest dynamics, Surface Hopping and phase
space mapping (CMM) approach for (left) spin-boson model
and (right) FMO complex.
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Figure 2. (upper-left) Cavity QED dynamics of trajectory
dynamics, where CMM/wMM outperforms Ehrenfest/SH
dynamics. (lower-left) Plateau of scattering probability of ECR
model. (upper-right) Spin dynamics for Ising model with short
range interaction.
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1. Constraint Coordinate-Momentum Phase Space (CMM)

2. Weighted Phase Space (wMM)

3. Weighted U(F)/U(F-2) Rank=2 Manifold Scheme: wMM-BO

Figure 3. (left) Weighted scheme
surrounding Ehrenfest trajectory
given in wMM-BO. (right) A
perturbative approach to include
corrections for Ehrenfest dynamics.
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