
 Spin-boson model
 Ehrenfest/Surface hopping dynamics fails in long time limit

 Our approach CMM gives correct asymptotic behavior which insensitive to 
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Phase Space Representation

Harmonic Model Studies
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We have developed the phase space formulation of quantum dynamics for nonadiabatic systems where both discrete and continuous degrees of

freedom are involved. The most essential element is the one-to-one correspondence mapping between quantum operators and classical functions

often defined on a smooth manifold, namely, phase space[1]. In particular, the phase space for discrete variables (e.g., electronic DOFs) is

consistent with the normalized population constraint[2], which can be parameterized onto the U(F)/U(F-1) manifold with Meyer-Miller variables,

called classical mapping models (CMM)[1-3], while the phase space for continuous variables (e.g., nuclear DOFs) adopts Wigner quasi-distribution.

It presents three important keys in phase space framework[1]: 1) the EOMs of the trajectory (generated by Hamiltonian dynamics), 2) the initial

condition of the trajectory (sampled from specific manifold), and 3) the integral expression for the expectation/ensemble (held for one-to-one

mapping).
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It is suggested that the constraint parameter can be negative, more than

a so-called “ZPE” factor[3]. We also naturally extend a scalar “ZPE”

factor to commutator variables to improve nuclear dynamics[4], and

weighted constraint manifolds (denoted as wMM) for better description

of electronic coherence and decoherence[1]. The unified phase space

framework has provided the solid base for developing more accurate

mixed quantum-classical methods for various nonadiabatic systems[1-5].
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• Constraint Phase Space (CMM)
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 7-site site-exciton FMO model
• Light harvest systems in green surfer bacteria

• (e)CMM outperforms EHR/FSSH in final equilibrium 

 Atom-in-Cavity model

 Tully’s scattering problem

 Ultrafast photo-dissociation dynamics
 Satisfy BO dynamics before entering coupling region

 Commutator variables with auxiliary equation of motions 

Figure 1: dissipative dynamics for spinboson models 

describe electron transfer process

Figure 2: re-absorption and re-emission of photons 

after spontaneous emission of an atom in cavity Figure 3: long time equilibrium for FMO exciton dynamics

Figure 4: Population dynamics with commutator variables
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2）Traciality
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5）Linearity & Hermiticity & Covariance…
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Figure 6: Transition probability on 1 or 2 surface

with respect to initial momentum. Panel a) gives

results of SAC model, panel b) presents those of

DAC model, and panel c) shows those of ECR

model.

Figure 5: (a) CMM vs (b) wMM.

• Weighted manifolds


